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THE PROBLEM OF CONSTRUCTING A LYAPUNOV FUNCTION *

A.P. BLINOV

An algorithm which, for a wide class of problems, enables a Lyapunov
function with & negative-sign derivative to be reconstructed as a Lyapunov
functicn with a negative-definite derivative, is proposed. This algorithm

supplements the well-known method /1/ of reconstructing a Lyapunov function.
Examples are considered.

Consider a set of differential equations of perturbed motion

=L@ ) =02 =R L HsE0@Q), {lleQC R )

We will assume that for {1} Lyapunov's function 17, (7)., vhich is positive definite in the
domain Q and whose time-derivative is non-positive in this domain and vanishes in the manifold
M — Q by virtue of Egs. (l), is known.

We shall formulate the problem of determining the functions 1, (2) (v {n — 1) and the
constants u, >0, for which the sum

I
Vi{g)=TVe(x) - Si uelzr pin—1 2
=

{the quantity p is refined while soclving the problem} will be positive definite, and its time
derivative is, by virtue of (1), a negative~definite function in Q

Sew

We shall show that for the additional assumptions introduced below this problem has the
following solution.

Supposge the manifold M is described by the equations S, {x) =0,

o S i{z) =0, which are
ale in © with respect to certain m variables, for example

gjem i (g, oo x), T {=0, =14 ...m

We shall determine the functions /°® and @, (i, & = 1, .. .. n) using the equations

jic (a1 vy Ty) = fi ('Tlc (J“m-n« PRSI 2’7,), ey Ty (Im-l, e (3)
xn}a xm%h LR} xﬂ)
N3
Dy (25 Zmoty - s T = — § F @mors < o1 2) iy + Dy (%)
[

Here (U, is an arbitrary function of the coordinates Tm-1: « « +y Xy, in a number of which
the coordinate r, does not occur, and My, (0) =0. (When k> m + 1

i zy is omitted in the left-
hand side of (4)).
if che functions §, do not depend on 2.1, - . ., &y, we Will assume that f°= 0.
we shall determine the function ¥V, (») in the form of the sum
n
V*l (r) — }\Z ;‘.;_ﬁ.);; {J}
=

in which the constants Mt will be determined below,
We shall write the time-derivative of this functilon by virtue of (1)

. K c P, {x
17*11’1‘}2232{3}2% ).‘: !

g

. 1=s] =%
Since for im
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. A (2) o
by e = = b (1)

k=1
after regrouping the terms we will obtain
n

x) ab,
*l<x)~—2w(x>/l<:c) Zn(z)S’% SO 3 @ )

k==ma1 1, K=m-+1
In Eq.(5) tie first sum is non-positive onM and the non-positive terms fy (x) 89y (x)'dz; (on M},
occurring in the latter sum forany 4; >0 (j =1, ..., n), Therefore, by choosing the coefficients
A; wecanattempt to satisfy the inequali t:;es
¥ *1 (7} U V*l (37) EyE 0 (G)

if not for all x=2 M 7 Q. then for z& M (7 Q,, €, Q, where £, is a domain bounded by the
surface Vy(z) =% (h is some constant). When passing through the domain with respect to the
surface M the derivative V. (z) changes sign. For convenience we shall further assume that
the domains Q, ©; are coincident.

We can note two simple special cases for choosing the required Aje

Case 1. There is at least one number k&, = {m +1,..., n}, for which a4, (r)dzr;, == 0 and
Dy, () 0x; =0 for h={m+1. ..., n}, b=k,

In this case it is sufficient to assume i, =1, 4; =0, 7 {1, ..., n}, j== 4, for inequality
(6) to hold.

Case 2. For all k,g=m+1.....mi=1,...,m and for at least one i, == {1, ..., m} Dy
dzq = 0, 89,70z, = 0, 30, 0xr; == 0.

To satisfy inequalities (6) it is here sufficient to assume J;, =1, 2; =0,j={1, ... »n}L
=R PE (In some cases the arbitrariness of the choice of the function @y () can alsoc be
used to reconstruct Lyapunov's function).

The inequalities (6) signify that the manifold M,;;( €, in which Ve =0, does not

agree with the manifold M and the cross-section M; = M | M,; has dimensions which are
smaller by at least one than those of M.

Therefore, if we can indicate the number Vx > { for which the functions V, {x) + 1,1, {4)
{(— Ve {7) — 1, V' (2)) are positive on QN {0} and ON 1/, respectively, then the sum I, (x) = p, 1, {2},
Vi{r) = Vi (2) will represent the new Lyapunov function for which the manifold M, degenerates
into a point or has dimensions which are less than thoss of M.

In the first case (for (2)}) p =1, and in the second, using the scheme described, we can
construct the following function 1, (for (2)), the constant M2, the manifold M. etc. up to
Vyon, for p, for which 1/, = {0}.

If we cannot immediately indicate the number u; then, bearing in mind the continuity of
the furnction 1"*1 (r) in Q and the equation 1, (0} = 0, we can choose the numbers & and py; (0 <
8§ < 1,0 < pny < 1) and the natural number A, such that the compact U, = {ze Q: ]z < &}
lies in the domain £ and at the same time the following inegualities hold:

(= Vi)
(U is the clesure of the domain @ \ Ly

It is obvious that the inequalities (6} hold for the time-derivative of the function
VoYt (o) by virtue of (1), as for 17,4 (), only if Ve {x) = 0 on M. (This additional condition
is assumed to hold henceforth).

The inegualities {6) will also hold in the domain (. 3/ = G, enclosed between the surfaces
Si{ry ==& (i=1, ..., m) for fairly small & > (.

Further, the natural number A, is found, for which the following ineguality will hclc
in the closure of the domain U\ G:

= Vola) a5 Uy (—p) Vi o (x)/—f——-mstn Vo(x)

AN, RS S ¢
-—-V'\’ Ny L Ve (2)
(the derivative on the left is calculated by virtue of (1)) and the number p,, & (U, 1] is found,

for which

AN~ 1 . - R
Paz —»I/m’ Yay K — min |V (2)]
2 xelng
- C A g e T2V e
Hence it follows that, assuming py = min {pg R}, N = max {¥;, Ap}and V= Tu»7, we
will obtain a new Lyapunov function 17, = p;V; with the above-mentioned properties.
Example 1. The set of eguations 2/
P L L AL RN
admits of the Lyapwnoy Suncoion b= Myt Y, and Uie aarifoid M ois Lhe parabols a2, = 2,7,

Since here

= 23,0, @y
= —2z,%, G
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{which corresponds to Case 1), then, assuming 4 =0, A =1 in (5), we will obtain V;= Yyzgh,
and for any p, >0 the function V is positive definite, and

Vi — 22k 2 (1 — 5f) — 1t (U 20% (= 1)
is negative definite in all the phase plane,
Example 2. The set of equations /3/

Iy == mg, Zy B e— Qg T Xy, Ty = - P ()~ @ (22}
>0, ¢ () EC (@Y en)e R, YO =¢0)=0

when the following conditions hold:
a) $la)a >0 5+0
b) ap (@)fmy — ¥ (2) D> 0y 235 0 ¢ (2)) = diozy
admits of the positive definite Lyapunov function
x Xy
i . 1
"ozaS ‘P(i)di+‘l"(n)rz+gm(i)ti;'%-'jg"za’
& <]
for which the derivative Vy = [’ {5} — e¢ (n)x] =¥ vanishes in the plane z,=8 by virtue of
condition b).,
We have

fxo - ﬂ? 3‘20 = Xy f30 = e (xz)
Dy = Py (g, 25)y, Dy == e 2y + O (23}, By = ¢ {2y) 25 -+ Doy (23)

Assuming @ {2, 3) = Yo 5} @y = Py = 0, we will obtain

3
2 f 8dy
ji ET = e 3% < 227y
i

desl

3
o,
DT e () 0 (o) ez
[E=S Y ¢
S,
Z frrr= = = P ) S P @) @ )+ ) mans
i=1 :
Assuming, then that A=l = A =1 (this choice of coefficients here frees us from
determining ¥ ), we will have
Vyms Yy 22 b {zy) 2y — 2y, Vi'1= = adg? o §F (2g) — 27 +

oy W' () + o+ 1 W (z) + @ @) 2 — () 9 ()

Since ¥, when g,s==0 does not change sign, the domain 0, can be chosen arbitrarily,
and the number p, is then defined for the new Lyapunov function "= ¥+ p,¥.

Example 3. In /4/ the problem of stabilization in a field of the central force of the
circular motion of a particle, controlled by the reaction u, is solved, The equation of the
pertrubed motion of a material particle

Ly, ay = obe, = (1L o {7
by tw W+ o)
R Gt e YA

opellyy
o LT T

1 —
= Tr Ty T W= VEN @Sk g by By & = const > 0

Homm e

lends itself to a positive definite Lyapunov function /4/, the time~derivative of which, by
virtue of (7), vanishes on the manifold M, defined by the eguation br, - w=10. Solving this
equation for z;, we obtain

H (3 @)= - wlb, ¥ (e, @) =0 £ (g, 2 =0

Assuming A =1, k=% =0, in the neighbourhood of the point z=0 we have

. A 171
Vig == Oy (23) +—2—£‘ za*%*—b—(‘,—:‘-f-?»)xmm ‘Q;—; #7340 (2f)

To eliminate the linear term, we shall use the arbitrariness in choosing the function @,
setting
iy
Py (23} = — 5 13
Then V= V,.
Assuming {(to simplify the notation) that b= 1/r, A = 4/%, we will find the quantity

Voo V0= 20 + g {{In (1 5 a/n) + 2,300 + daydr] ) (1 4 xyfre) — 2y {Bru + 1,0
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which is negative on M \ {0} and vanishes on M;, determined by the equations

I/E (2r —z,) 2y

x 3=y T
377 5r2 4 8rzy + 4xp?

=0,

Further, determining 1, we can show that the derivative T, is negative definite on
M, i.e. M,= {0}

For system (l) of order two we can show that if the function V, is known and in the
domain Q the equation § (x;, z,) = 0, which describes the manifold M, is uniquely solvable for
xy (or z;), and the phase trajectories intersect M without touching, then the following
inequality occurs in O\ {0}:

as as
fl—;g + feor #0

[
such that the unknown function V can be constructed always.

In fact, after transferring in (1) to polar coordinates using the equations z, = r cos 0,
S(z;y, 2) = rsin 6, 6 = {0, 2a] (or z, = rsin 6. § (25, a,) = rcos 8) the manifold M coincides with
the straight line 6 =10, 8 = 2, on which the derivative 6 is determined by the set of equations
6 =49 (6, r), " = R (8, r), which corresponds to (1), unlike zero for r 5= 0.

Without loss of generality, we can assume that

=00 >0 =438@x Nnz=o0, r>0

If the inequality ¥ (7, ) > 0 occurs (the pointx, = 0, 7» = 0 is a stable focus), we will
determine the periodic function, odd with respect to 6, of the period 2m,

I——r’»sinZkG, (8], |6 —a| < 4'_‘

V=

k
s 2k a ; 1 =
lr:smzk_i(e——g—), ——n(l—-m—)<\6<_ o

and if the inequality @ (a, r) <{ 0 occurs, we will determine

—risink0, |9,160 — < —

V J , Ie 1]\\ Tk

1 —

I T 1
oy T\\\QQH (1—-—2T)
(k is an odd natural number, . is the lowest degree of the expansion of the function V, (r cos 8,
rsin 8) with respect to the powers r).

The function V,;, determined in this way, is continuous in Q together with the partial

derivatives, and its time derivative, by virtue of (1), has the form

— 2)0y cos 240 — Rysin 2k0, 0], |0 x| <

V= Zk—z_k_—lﬂlcusszi—l@——g—>+ﬁlsi112k2£1(9——g—>
when ¢ (7, r) <L O;
l’—-lzﬁ,cn.\I;G——HlsinkB, 107,10 — | <l
th_Hl, e ——

when ¢ (x.r)>>0. Here 9, =r9(8, r), Ry =W"1R (0, ).

Since the value k = k, exists, for which the derivative V,” will be negative definite on
M, then for k = k, > k,the number e, n (4k) >>& >0, will be found for which ¥V, will be negative
definite in the sectors |8 | <, |0 —a |<e.

It further remains to determine the value p; >0, for which the functions V="V,+ uty.
(—V) will be positive definite in Q.

Note that this reconstruction of Lyapunov's function can be used to estimate the time of
arrival of the phase point in a specified domain /5/.

The author thanks V.A. Samsonov for useful comments.
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THE APPROXIMATE SYNTHESIS OF PERTURBED NON-VIBRATING
SYSTEMS WITH ONE DEGREE OF FREEDOM*

L.D. AKULENKC

The pattern of the synthesis of a vontrol which is optimal in speed of resp
response for non-vibrating systems of a quite general form with one degree

of freedom is discussed. The results of an analysis of such systems by the
maximum principle /1/ are used; these results are based on constructing

the switching curve of a relay control /2/. The picture of an approximate
synthesis in the neighbourhood of a gquiescent point (the origin of coordinates)
obtained for controlled vibrating systems by asymptotic methods is
complemented by the results obtained /3/.

1. Statement of the problem of synthesis that is optimal as regards
speed of response for perturbed non-vibrating systems. 1.I1. The initial contrel
problem. Consider the following perturbed controlled dynamic system with one Jegree of freedom:

o=y, Y=oy w) el (2 y w) | (1.1
(x WEGCS Ry 2(0) =27, y(U) =y°

Here r, y are the system's ccordinate and its velocity, i.e. the generalized phase variables,
R, is the phase plane, a dot means differentiation with respect to time t= [0, T1{T <o) u
is a scalar control piecewise-smooth function such that jr{N {1 e . ¢l is a small numeri-
cal parameter {0 <{e <€ 1}, and f. F are smooth functions of r. y and u in the domain underx
consideration {the perturbation function F may be continuously dependent on ¢}, The additional
properties {smoothness, growth, etc.) of the functions f and F, and of the domain ¢ are
discussed below. It should be noted that the constraints on the control u of the form r~ (r, y,
g) LuKrr(a, y, E) are reduced to those discussed by the linear change

=ty Yy AV (-, v [, ]
{where v is the new control)}.

For the perturbed system (1.1} we formulate the problem of defining the law of the control
that is optimal regarding speed of response in the form of the synthesis of u{r. ¥, &) which, for
sufficiently small &> 0, brings the phase point (z, y} & & to the origin of coordinates {the
point (0, 0y = ). It is assumed that the solution of the optimal synthesis for the unperturbed
problem (e = 0) is known and is in the form of a centrol switching curve of a relay character
lh 2/,

Below we discuss the case of non-vibrating systems (non-oscillating objects, /2/), for
which the unperturbed switching curves have the simplest form: the curve consists of two
semitrajectories of the unperturbed system (1.1}, going to the origin and corresponding to¢ the
constant extreme values w= --i. In /2/ the sufficient conditions are given under which the
gynthesis of the control u{x, ¥), optimal regarding speed of response in the whole of the
plane R,, or in a certain cpen domain G{Z A, which includes the neighbourhood of the origin,
and has qualitatively the same form as that for the simplest dynamic system (1,1}: 27 = u,
fu i< 1. Namely, "each optimal contrel has nc more than one switching, and the switching line
passes from thesecond to the fourth quadrant touching the x-axis (z, = y) at the origin®
{see /2/).

The sufficient conditions of this picture of the optimal synthesis are as follows [(ses
/2/1. It is assumed that the function £ is continuously differentiable with respect to all
arguments and satisfies the monotonicity condition with respect to u

fl il o w0, (2 =6, Ju <<t (1.2)
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